全国专线咨询

18428357207

QQ:1443745438

当前所在位置:主页 > 大数据技术 > 大数据技术 >

如何进行大数据处理?

2017-05-23 14:48 来源:未知 编辑: admin 点击:
导读经常会有朋友问到,大数据分析处理的常用的方法有哪些,我需要学习哪个等等之类的问题,今天又科多课程老师给大家整理了4种常用的大数据处理方法,供大家参考学习。

    经常会有朋友问到,大数据分析处理的常用的方法有哪些,我需要学习哪个等等之类的问题,今天又科多课程老师给大家整理了4种常用的大数据处理方法,供大家参考学习。

1. 大数据处理之一:采集大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。

如何进行大数据处理?

2. 大数据处理之二:导入/预处理虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

3. 大数据处理之三:统计/分析统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

4. 大数据处理之四:挖掘与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。 整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
     大数据大势所趋,都说谁能掌握数据,谁就可以获得潜在财富。现在刚好是大数据发展初期,希望大家把握住机会!想要获得更多资讯

标题
专题推荐
标题
标题
大数据热门标签
图书推荐